代数码具有良好性质
Algebraic codes are good
   Patrick Solé
报告人照片   Patrick Solé 是法国巴黎第8大学教授,国际著名的代数编码顶级专家,研究领域包括代数组合、代数图论、代数编码、离散数学、格的构造、模形式等。目前已在国际著名期刊IEEE Transaction Information Theory, Finite Fields and Their Applications, Journal of Algebra, Journal of Combinatorial Theory Series B, Bulletin of the American Mathematical Society 等发表170余篇专业学术论文,在国际学术会议上发表论文70余篇,出版英文专著3本。1995年Patrick Solé与其合作者获得信息论方面的最佳论文奖。
  We consider the aymptotic performance of algebraic codes. In a series of papers with turk and saudi coworkers, we have shown by expurgated random coding that double circulant codes, double negacirculant codes, quasi-cyclic and quasi-twisted codes of fixed index are good. An important tool there is Artin primitive root conjecture. In a recent preprint (jointly with M. Shi and R. Wu) we show that long cyclic codes are good. This solves a half century old research problem. The main ingredient of the proof is a map between quasi-cyclic codes and 2-D cyclic codes. We also show, by a similar map, that long additive cyclic codes over field extensions are good.
报告时间:2017年10月26日15时00分    报告地点:西区教三楼3A309
报名截止日期:2017年10月26日    可选人数:60